Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Rev. int. sci. méd. (Abidj.) ; 23(1): 68-73, 2021. tables, figures
Artículo en Francés | AIM (África) | ID: biblio-1397426

RESUMEN

Contexte. Pathologie obstétricale fréquente en Guinée, souvent de découverte fortuite, car il n'y a pas de dépistage systématique. L'objectif : était de déterminer la prévalence du diabète gestationnel (DG) en consultation prénatale dans un centre de santé urbain de la ville de Conakry. Méthodes. Il s'agissait d'une étude prospective de type descriptif et analytique Elle a été menée au centre de santéde Koulewondy du 1er novembre 2019 au 29février 2020. Le dépistage était proposé à toutes les femmes enceintes entre 24 et 27 SA. Les comparaisons statistiques étaient à l'aide du test Chi2. Les différences étaient considérées signifi catives pour p<0,05. Résultats.Le passage du dépistage ciblé sur les facteurs de risques à un dépistage systématique a permis d'avoir une prévalence du diabète gestationnel en Consultation Prénatale Recentrée (CPNR) de 16,78% dans notre série. Le profi l épidémiologique était celui d'une gestante ménagère sans niveau instruction, mariée et dont l'âge moyen était de : 28,7± 6,5 ans, la parité moyenne était de : 2,11± 1,9 accouchements , l'âge gestationnel moyen était de 27,1± 5,6 SA , la valeur prédictive positive du test de dépistage en fonction des facteurs de risque était de 32,6% et la sensibilité 0,157. Conclusion. Le dépistage demeure le meilleur moyen de prévention.


Asunto(s)
Diagnóstico Prenatal , Diabetes Gestacional , Tamizaje Masivo , Diabetes Mellitus , Farmacología en Red
2.
Vaccine ; 38(31): 4877-4884, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32499066

RESUMEN

BACKGROUND: As part of a Phase III trial with the Ebola vaccine rVSVΔG-ZEBOV-GP in Guinea, we invited frontline workers (FLWs) to participate in a sub-study to provide additional information on the immunogenicity of the vaccine. METHODS: We conducted an open-label, non-randomized, single-arm immunogenicity evaluation of one dose of rVSVΔG-ZEBOV-GP among healthy FLWs in Guinea. FLWs who refused vaccination were offered to participate as a control group. We followed participants for 84 days with a subset followed-up for 180 days. The primary endpoint was immune response, as measured by ELISA for ZEBOV-glycoprotein-specific antibodies (ELISA-GP) at 28 days. We also conducted neutralization, whole virion ELISA and enzyme-linked immunospot (ELISPOT) assay for cellular response. RESULTS: A total of 1172 participants received one dose of vaccine and were followed-up for 84 days, among them 114 participants were followed-up for 180 days. Additionally, 99 participants were included in the control group and followed up for 180 days. Overall, 86.4% (95% CI 84.1-88.4) of vaccinated participants seroresponded at 28 days post-vaccination (ELISA- GP) with 65% of these seroresponding at 14 days post-vaccination. Among those who seroresponded at 28 days, 90.7% (95% CI 82.0-95.4) were still seropositive at 180 days. The proportion of seropositivity in the unvaccinated group was 0.0% (95% CI 0.0-3.8) at 28 days and 5.4% (95% CI 2.1-13.1) at 180 days post-vaccination. We found weak correlation between ELISA-GP and neutralization at baseline but significant pairwise correlation at 28 days post-vaccination. Among samples analysed for cellular response, only 1 (2.2%) exhibited responses towards the Zaire Ebola glycoprotein (Ebola GP ≥ 10) at baseline, 10 (13.5%) at day 28 post-vaccination and 27 (48.2%) at Day 180. CONCLUSIONS: We found one dose of rVSVΔG-ZEBOV-GP to be highly immunogenic at 28- and 180-days post vaccination among frontline workers in Guinea. We also found a cellular response that increased with time.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , África Occidental/epidemiología , Anticuerpos Antivirales , República Democrática del Congo , Brotes de Enfermedades , Guinea/epidemiología , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Inmunidad Celular
3.
Vaccine ; 37(48): 7165-7170, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31623917

RESUMEN

BACKGROUND: Alongside the clinical aspects of the immunogenicity and safety trial of an Ebola vaccine deployed among front-line workers, a qualitative study was conducted to describe motivations behind individuals' decisions to participate - or not to participate - in the study. METHODS: In July and August 2015, focus group discussions and semi-structured individual interviews were conducted in Conakry, Guinea. Individuals were eligible for the qualitative study if they met the inclusion criteria of the immunogenicity and safety study irrespective of their participation. Surveys were also conducted among several institution and department heads of staff included in the study as well as vaccine trial staff members. Discussion and interview transcripts were analyzed using content thematic analysis. RESULTS: Interviews and focus groups were conducted among 110 persons, of whom about two-thirds (67%) participated in the vaccine trial. There was at least one group interview conducted at each participating trial site, along with numerous formal and informal interviews and conversations through the enrollment period. Participants were often motivated by a desire to save and protect themselves and others, contribute to scientific progress, or lead by example. Non-participants expressed concerns regarding the risk and costs of participation, particularly the fear of unknown side effects following vaccination, and distrust or fear of stigmatization. CONCLUSIONS: Despite the unique nature of the 2014-2015 Ebola outbreak, front-line workers employed much of the same logic when choosing to participate as in other clinical trials in similar settings. Special consideration should be given to addressing perceived inequity, misunderstanding, and mistrust among the target populations in future trials. Clinical trial registry number: This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193.


Asunto(s)
Vacunas contra el Virus del Ébola/efectos adversos , Personal de Salud , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/prevención & control , Participación del Paciente , Adulto , Vacunas contra el Virus del Ébola/inmunología , Análisis Factorial , Femenino , Guinea/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Investigación Cualitativa , Proyectos de Investigación , Factores de Riesgo , Vacunación , Adulto Joven
4.
Vaccine ; 37(48): 7171-7177, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30266489

RESUMEN

BACKGROUND: As part of the ring vaccination trial in Guinea, Front Line Workers were invited to participate in a sub-study to provide additional information on the immunogenicity and safety of rVSVΔG/ZEBOV-GP. Here we summarize the information on the safety follow-up. METHODS: An open-label, non-randomized, immunogenicity evaluation of one dose of rVSVΔG/ZEBOV-GP was conducted in Conakry, Guinea between March 2015 and July 2016. Front-line workers refusing vaccination were invited to participate as a control group. Participants were followed for 3 months with a subset followed-up for 6 months after vaccination. Women becoming pregnant during the follow-up were followed until pregnancy outcome. Solicited and unsolicited adverse events were monitored at each contact with participants using standardized study forms. RESULTS: 2016 vaccinated participants and 99 controls were included in the safety cohort. On the 3 days post-vaccination visit adverse events were very common, with over 70% of participants reporting at least one adverse event. The most frequently reported symptoms were headache, fatigue, arthralgia, subjective fever and myalgia. Among participants that completed fever diaries (n = 887), post-vaccination fever was reported by 15.22%. Comparing to the unvaccinated group, local reaction, fatigue, headache, arthralgia, myalgia and subjective fever occurring within the first 3 days post-vaccination were statistically significantly different in the vaccinated group compared to the unvaccinated. A total of 8 Serious Adverse Events were identified during follow-up. 2 SAEs were related to pregnancy. CONCLUSIONS: Results confirm that adverse events 3 days after vaccination with the rVSV candidate vaccine are common. The occurrence of fever is of particular concern in the context of ongoing Ebola transmission. Additional studies should address important data gaps regarding the use of the vaccine in pregnancy and other vulnerable populations.


Asunto(s)
Vacunas contra el Virus del Ébola/efectos adversos , Vacunas contra el Virus del Ébola/inmunología , Personal de Salud , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/prevención & control , Adulto , Vacunas contra el Virus del Ébola/administración & dosificación , Femenino , Estudios de Seguimiento , Guinea/epidemiología , Humanos , Inmunogenicidad Vacunal , Masculino , Embarazo , Vigilancia en Salud Pública , Factores de Riesgo , Vacunación/efectos adversos , Vacunación/métodos , Adulto Joven
5.
Euro Surveill ; 23(12)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29589579

RESUMEN

On 11 May 2015, the Dubréka prefecture, Guinea, reported nine laboratory-confirmed cases of Ebola virus disease (EVD). None could be epidemiologically linked to cases previously reported in the prefecture. We describe the epidemiological and molecular investigations of this event. We used the Dubréka EVD registers and the Ebola treatment centre's (ETC) records to characterise chains of transmission. Real-time field Ebola virus sequencing was employed to support epidemiological results. An epidemiological cluster of 32 cases was found, of which 27 were laboratory confirmed, 24 were isolated and 20 died. Real-time viral sequencing on 12 cases demonstrated SL3 lineage viruses with sequences differing by one to three nt inside a single phylogenetic cluster. For isolated cases, the average time between symptom onset and ETC referral was 2.8 days (interquartile range (IQR): 1-4). The average time between sample collection and molecular results' availability was 3 days (IQR: 2-5). In an area with scarce resources, the genetic characterisation supported the outbreak investigations in real time, linking cases where epidemiological investigation was limited and reassuring that the responsible strain was already circulating in Guinea. We recommend coupling thorough epidemiological and genomic investigations to control EVD clusters.


Asunto(s)
ADN Viral/genética , Ebolavirus/genética , Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/transmisión , Trazado de Contacto , Brotes de Enfermedades/prevención & control , Genómica , Guinea/epidemiología , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Humanos , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Lancet ; 389(10068): 505-518, 2017 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-28017403

RESUMEN

BACKGROUND: rVSV-ZEBOV is a recombinant, replication competent vesicular stomatitis virus-based candidate vaccine expressing a surface glycoprotein of Zaire Ebolavirus. We tested the effect of rVSV-ZEBOV in preventing Ebola virus disease in contacts and contacts of contacts of recently confirmed cases in Guinea, west Africa. METHODS: We did an open-label, cluster-randomised ring vaccination trial (Ebola ça Suffit!) in the communities of Conakry and eight surrounding prefectures in the Basse-Guinée region of Guinea, and in Tomkolili and Bombali in Sierra Leone. We assessed the efficacy of a single intramuscular dose of rVSV-ZEBOV (2×107 plaque-forming units administered in the deltoid muscle) in the prevention of laboratory confirmed Ebola virus disease. After confirmation of a case of Ebola virus disease, we definitively enumerated on a list a ring (cluster) of all their contacts and contacts of contacts including named contacts and contacts of contacts who were absent at the time of the trial team visit. The list was archived, then we randomly assigned clusters (1:1) to either immediate vaccination or delayed vaccination (21 days later) of all eligible individuals (eg, those aged ≥18 years and not pregnant, breastfeeding, or severely ill). An independent statistician generated the assignment sequence using block randomisation with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 individuals vs >20 individuals). Ebola response teams and laboratory workers were unaware of assignments. After a recommendation by an independent data and safety monitoring board, randomisation was stopped and immediate vaccination was also offered to children aged 6-17 years and all identified rings. The prespecified primary outcome was a laboratory confirmed case of Ebola virus disease with onset 10 days or more from randomisation. The primary analysis compared the incidence of Ebola virus disease in eligible and vaccinated individuals assigned to immediate vaccination versus eligible contacts and contacts of contacts assigned to delayed vaccination. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. FINDINGS: In the randomised part of the trial we identified 4539 contacts and contacts of contacts in 51 clusters randomly assigned to immediate vaccination (of whom 3232 were eligible, 2151 consented, and 2119 were immediately vaccinated) and 4557 contacts and contacts of contacts in 47 clusters randomly assigned to delayed vaccination (of whom 3096 were eligible, 2539 consented, and 2041 were vaccinated 21 days after randomisation). No cases of Ebola virus disease occurred 10 days or more after randomisation among randomly assigned contacts and contacts of contacts vaccinated in immediate clusters versus 16 cases (7 clusters affected) among all eligible individuals in delayed clusters. Vaccine efficacy was 100% (95% CI 68·9-100·0, p=0·0045), and the calculated intraclass correlation coefficient was 0·035. Additionally, we defined 19 non-randomised clusters in which we enumerated 2745 contacts and contacts of contacts, 2006 of whom were eligible and 1677 were immediately vaccinated, including 194 children. The evidence from all 117 clusters showed that no cases of Ebola virus disease occurred 10 days or more after randomisation among all immediately vaccinated contacts and contacts of contacts versus 23 cases (11 clusters affected) among all eligible contacts and contacts of contacts in delayed plus all eligible contacts and contacts of contacts never vaccinated in immediate clusters. The estimated vaccine efficacy here was 100% (95% CI 79·3-100·0, p=0·0033). 52% of contacts and contacts of contacts assigned to immediate vaccination and in non-randomised clusters received the vaccine immediately; vaccination protected both vaccinated and unvaccinated people in those clusters. 5837 individuals in total received the vaccine (5643 adults and 194 children), and all vaccinees were followed up for 84 days. 3149 (53·9%) of 5837 individuals reported at least one adverse event in the 14 days after vaccination; these were typically mild (87·5% of all 7211 adverse events). Headache (1832 [25·4%]), fatigue (1361 [18·9%]), and muscle pain (942 [13·1%]) were the most commonly reported adverse events in this period across all age groups. 80 serious adverse events were identified, of which two were judged to be related to vaccination (one febrile reaction and one anaphylaxis) and one possibly related (influenza-like illness); all three recovered without sequelae. INTERPRETATION: The results add weight to the interim assessment that rVSV-ZEBOV offers substantial protection against Ebola virus disease, with no cases among vaccinated individuals from day 10 after vaccination in both randomised and non-randomised clusters. FUNDING: WHO, UK Wellcome Trust, the UK Government through the Department of International Development, Médecins Sans Frontières, Norwegian Ministry of Foreign Affairs (through the Research Council of Norway's GLOBVAC programme), and the Canadian Government (through the Public Health Agency of Canada, Canadian Institutes of Health Research, International Development Research Centre and Department of Foreign Affairs, Trade and Development).


Asunto(s)
Vacunas contra el Virus del Ébola , Fiebre Hemorrágica Ebola/prevención & control , Adolescente , Adulto , Niño , Análisis por Conglomerados , Trazado de Contacto , Ebolavirus , Femenino , Guinea , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/transmisión , Humanos , Masculino , Glicoproteínas de Membrana , Persona de Mediana Edad , Resultado del Tratamiento , Vesiculovirus , Adulto Joven
7.
Lancet ; 386(9996): 857-66, 2015 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-26248676

RESUMEN

BACKGROUND: A recombinant, replication-competent vesicular stomatitis virus-based vaccine expressing a surface glycoprotein of Zaire Ebolavirus (rVSV-ZEBOV) is a promising Ebola vaccine candidate. We report the results of an interim analysis of a trial of rVSV-ZEBOV in Guinea, west Africa. METHODS: For this open-label, cluster-randomised ring vaccination trial, suspected cases of Ebola virus disease in Basse-Guinée (Guinea, west Africa) were independently ascertained by Ebola response teams as part of a national surveillance system. After laboratory confirmation of a new case, clusters of all contacts and contacts of contacts were defined and randomly allocated 1:1 to immediate vaccination or delayed (21 days later) vaccination with rVSV-ZEBOV (one dose of 2 × 10(7) plaque-forming units, administered intramuscularly in the deltoid muscle). Adults (age ≥18 years) who were not pregnant or breastfeeding were eligible for vaccination. Block randomisation was used, with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 vs >20 individuals). The study is open label and masking of participants and field teams to the time of vaccination is not possible, but Ebola response teams and laboratory workers were unaware of allocation to immediate or delayed vaccination. Taking into account the incubation period of the virus of about 10 days, the prespecified primary outcome was laboratory-confirmed Ebola virus disease with onset of symptoms at least 10 days after randomisation. The primary analysis was per protocol and compared the incidence of Ebola virus disease in eligible and vaccinated individuals in immediate vaccination clusters with the incidence in eligible individuals in delayed vaccination clusters. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. FINDINGS: Between April 1, 2015, and July 20, 2015, 90 clusters, with a total population of 7651 people were included in the planned interim analysis. 48 of these clusters (4123 people) were randomly assigned to immediate vaccination with rVSV-ZEBOV, and 42 clusters (3528 people) were randomly assigned to delayed vaccination with rVSV-ZEBOV. In the immediate vaccination group, there were no cases of Ebola virus disease with symptom onset at least 10 days after randomisation, whereas in the delayed vaccination group there were 16 cases of Ebola virus disease from seven clusters, showing a vaccine efficacy of 100% (95% CI 74·7-100·0; p=0·0036). No new cases of Ebola virus disease were diagnosed in vaccinees from the immediate or delayed groups from 6 days post-vaccination. At the cluster level, with the inclusion of all eligible adults, vaccine effectiveness was 75·1% (95% CI -7·1 to 94·2; p=0·1791), and 76·3% (95% CI -15·5 to 95·1; p=0·3351) with the inclusion of everyone (eligible or not eligible for vaccination). 43 serious adverse events were reported; one serious adverse event was judged to be causally related to vaccination (a febrile episode in a vaccinated participant, which resolved without sequelae). Assessment of serious adverse events is ongoing. INTERPRETATION: The results of this interim analysis indicate that rVSV-ZEBOV might be highly efficacious and safe in preventing Ebola virus disease, and is most likely effective at the population level when delivered during an Ebola virus disease outbreak via a ring vaccination strategy. FUNDING: WHO, with support from the Wellcome Trust (UK); Médecins Sans Frontières; the Norwegian Ministry of Foreign Affairs through the Research Council of Norway; and the Canadian Government through the Public Health Agency of Canada, Canadian Institutes of Health Research, International Development Research Centre, and Department of Foreign Affairs, Trade and Development.


Asunto(s)
Vacunas contra el Virus del Ébola , Fiebre Hemorrágica Ebola/prevención & control , Adulto , Ebolavirus/inmunología , Femenino , Vectores Genéticos , Guinea/epidemiología , Fiebre Hemorrágica Ebola/epidemiología , Humanos , Incidencia , Estimación de Kaplan-Meier , Masculino , Glicoproteínas de Membrana/metabolismo , Persona de Mediana Edad , Vacunación/métodos , Vesiculovirus/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...